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CALCULATION OF COST EFFICIENCY BY INVERSE LINEAR 

PROGRAMMING WITH TWO-STAGE STRUCTURE 

  

Abstract. Data envelopment analysis (DEA) is a linear programming 

technique which measures the relative efficiency of the decision making units 
(DMUs) based on input and output data. One of the applications of data 

envelopment analysis is calculation of cost efficiency. The methods used for 

calculation of cost efficiency in DEA are often minimizing production costs. These 

methods lack sufficient efficiency in system evaluation (including network systems) 
as they ignore the internal structure of the units and their intermediate products. In 

this regard, the present study introduced an inverse linear programming and used 

that in cost efficiency calculations to propose a new method which considers the 
network structure of the units. In this way, the proposed method can determine the 

optimal prices and proper costs to make the desired unit more efficient. 

Keywords: Data envelopment analysis, Cost efficiency, Inverse linear 
programming, Two stage structure. 
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1. Introduction  

Efficiency assessment has been always considered in evaluation of the 

production companies. Farrell (1975) using a method like efficiency measurement 

in engineering fields, calculated the efficiency of a production unit. Charnes et al 

(1978) developed the Farell’s idea and proposed a pattern called data envelop 

analysis. This pattern was able to measure the efficiency with several inputs and 

outputs. In fact, DEA is a non-parametric method to measure the relative efficiency 

of the decision making units with multiple inputs and outputs through use of 

mathematical and linear programming. The real structure of decision making units 
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is very complicated and is not just like a box with inputs and outputs. These units 

include interacting subunits with intermediate values (intermediate products) which 

are the input of one stage and the output of the other. Conventional DEA methods 

are inefficient in evaluation of the performance of such units due to ignoring the 

internal processes. Therefore they fail to provide the required knowledge to the 

managers. To overcome this problem, network data envelop analysis was 

introduced which can provide the possibility of assessing the efficiency of each 

unit and investigating their internal processes. Fare and Grosskopf (2000) 

introduced the network insight for the first time which was developed by the other 

researchers. In contrary with the traditional models, network DEA models do not 

have standard form and their model depends on the structure of the decision 

making unit, the interaction of the subunits and type of inputs and outputs (see Kao 

2014). The communication structure of the subunits could be simple or 

complicated but the two-stage structure used in this study has a simple and basic 

network structure and many of the properties of network efficiency can be obtained 

by generalization of this relation. Seiford and Zhu (1999) used a two-stage process 

to evaluate the performance of 55 banks in US. To calculate the efficiency of the 

stages and total efficiency, traditional models were used separately and 

independently. Kao and Hwang (2008) presented a different method to evaluate the 

performance of two-stage systems with secrete relationships. Their method showed 

the effect of intermediate products on the total efficiency. In their proposed method 

was defined as the multiplication of the stages’ efficiency. Chen et al. (2009) 

proposed a model similar to that of Kao and Hwang (2008) the only difference was 

that the total efficiency of the two-stage system was the summation of the stages 

efficiency; and they could use it in two states of fixed and varying scale efficiency. 

Despotis and Koronakos (2014) introduced a new method for determining the 

efficiency of two-stage systems which did not have the drawbacks of multiplying 

and summing methods. In this study, we proposed a two-stage structure for 

calculation of cost efficiency using inverse linear programming for a two-stage 

system. 

Inverse linear programming has been used in cases with optimization 

model in which determination of weights or capacities was difficult, if the optimal 

solution is determined by some experiments or experiences, then we can determine 

the variables. Inverse linear programming was investigated by Zhang and Liu 

(1996). Yang and Zhang (1999) proposed two general methods for inverse 

optimization of summation models. In a study, Sadri, Rostamy and Shoja (2017) 
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used inverse linear programming for data envelop analysis and obtained the proper 

costs for efficient units but lacked cost efficiency.  

    In this study, it was tried to develop the proper cost in a network 

structure for a two-stage process using inverse optimization problem. In reality, 

most of DMUs possess two- or multistage processes. Classic DEA methods do not 

consider intermediate stages in calculation of efficiency; this means that inputs are 

used for production of outputs regardless of internal interactions. In fact, classic 

DEA methods calculate efficiency just like a black box. In this study, by 

consideration of intermediate stages, we calculated the proper cost to make the 

inefficient units more efficient. 

The rest of paper is organized as follows, in the second section, inverse 

linear programming is expressed. Cost model with two-stage structure is explained 

in the third section, then the inverse cost model is presented with two-stage 

structure and the proposed model was tested using a numerical example. The next 

section presents a model in which the prices were considered as the intermediate 

inputs. It was then numerically assessed. The conclusions are made in the last 

section. 

 

2. Inverse linear programming 

Inverse optimization problem was first addressed by researchers in 
geophysics. However, mathematical scientists showed more enthusiasts for that. In 

recent years, inverse optimization problem has drawn a considerable attention 

among engineers and mathematicians due to its numerous applications. 
Now using inverse linear programming presented by Zhang and Liu (1996), we 

show the series of possible solutions by S. suppose that xo is a possible answer and 

c, xϵℝn, bϵℝm and A is a mxn matrix. Consider following problem: 

min     cx  

s. t:     Ax = b                                                                                                                      (1) 

           x ≥ 0 

We want to modulate c in a way that xo becomes the optimal answer for problem 

(1). We define: 

 ℱ(xo) = {c̃ ϵℝn|min {c̃x|Ax = b, x ≥ 0} = c̃xo}      

So, the inverse optimization problem corresponding to problem (1) will be defined 

as: min{‖c̃ − c‖𝑝|c̃ϵℱ(xo)} .         

In which ‖. ‖𝑝 is the proper norm of the problem. 
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Inverse linear programming disturbs the target function to c̃. in a way that possible 

point of xo will be the optimal answer of the problem in respect of vector c̃ with 

minimum distance to c vector. Therefore the aim is minimization of ‖c̃ − c‖. 

3.Two-stage structure 

Two-stage production systems are the simplest form of production systems 

with network structure in which the stages are interacting with each other in serial 

manner. Numerous studies have addressed two-stage systems in DEA reflecting its 

importance in efficiency evaluation of DMUs in various industries. 

In the first stage of two-stage systems, inputs are used for production of outputs 

called intermediate products which will be used as the input of the second stage to 

reach to the final output. 

Suppose n DMUs with two-stage structure. The first stage uses m inputs for 

production on q intermediate products. The second stage uses the output of the first 

stage as its input and produce s final outputs. Assume that for each  DMU𝑗 

(j=1,…,n), the input vector of the first stage has the form of xij(i=1,…,m). The 

values of intermediate vector are in form of 𝑍dj (d=1,…,D) and the output of the 

second step is in form of yrj (r=1,…,s).  

CCR model assesses the system efficiency while ignoring the two-stage structure 

and the relationships between the stages. The work of Kao and Hwang (2008) can 

be regarded as one of the important researches in the field of efficiency evaluation 

of two-stage production systems. By adding the corresponding operation of each 

stage to fractional CCR model, they managed to modify the performance of the 

two-stage systems and presented following model: 

Ek = Max 
u,v,w

utyk

vtxk
 

s.t     
utyj

vtxj
≤ 1      j = 1, … , n 

         
utyj

wtzj
≤ 1       j = 1, … , n                                      (2) 

         
wtzj

vtxj
≤ 1      j = 1, … , n 

         u, v, w ≥ 0 
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Regarding model (2), the first constraint can be obtained from the second 

and third constraint. Therefore the first constraint can be eliminated from the 

model. It must be noted that the main assumption in model (2) is that the assigned 

weight of the intermediate products is the same in both stages; although they act as 

the output and input in the first and second stages, respectively. The dual nature of 

the intermediate products results in a condition in which the total efficiency of the 

system is equal with the multiplication of stages’ efficiency (𝐸𝑘 = 𝐸𝑘
1 × 𝐸𝑘

2). In 

fact the model of Kao and Hwang (2008) describes the physical relationship 

between the main process and its sub-processes. Using Charnes and Cooper (1962) 

transformations, the linear form of model (2) can be expressed ad model (3). 

EK = max ∑ urYrk   
s
r=1      

           s. t.    ∑ vixik = 1m
i=1       

                     ∑ wdzdj
D
d=1 − ∑ vi

m
i=1 xij ≤ 0     j =

1, … , n,                       (3)                         

                     ∑ uryrj
s
r=1 − ∑ wdzdj

D
d=1 ≤ 0         j = 1, … , n,  

                    ur  , vi , wd ≥ 0   , r = 1, … , s;  i = 1, … , m;   d = 1, … , D.             
 

Kao and Hwang model is a radial model. This means that the variation in 

inputs and outputs are with the similar ratio which can be used in evaluation of the 
two-stage production systems. This model can be only applied for efficiency in 

fixed scale. 

4. The problem of inverse linear programming of cost model with a  

                two-stage structure 
In this section, the cost efficiency model will be presented by inverse linear 

programming. 

For Kao and Hwang (2008) model, the efficiency of a two-stage system can be 

expressed as follows. Considering dual model of (3), its coverage form will be: 

min   θ 

s. t.        ∑ λjxij ≤ θ

n

j=1

xio                               i = 1, … , m                

                ∑ (λ
j

− μ
j
)zpj

n

j=1
≥ 0                 p = 1, … , q                                                               (   (4  

                ∑ μ
j
yrj

n

j=1

≥ yro                               r = 1, … , s                                              

                 μ
j
, λ

j
≥ 0                                        j = 1, … , n   
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Now, using efficiency of two-stage system, cost model can be defined for a two-

stage system: 

min   CX 

s. t.        ∑ λjxij ≤

n

j=1

xi                                    i = 1, … , m                       (a) 

         ∑(λ
j

− μ
j
)zpj

n

j=1

≥ 0                p = 1, … , q                             (b)                (5) 

     ∑ μ
j
yrj

n

j=1

≥ yro                         r = 1, … , s                         (c)                                        

                 μ
j
, λ

j
≥ 0                                  j = 1, … , n 

Definition 1: assume(x∗, λ∗, μ∗) is the optimal solution of the model. The 

efficiency of the evaluated unit can be defined as: 

EC =
∑ Cioxi

∗m
i=1

∑ Cioxio
m
i=1

                                                                                                             (6) 

        , 0 < ECj ≤ 1 

The evaluated unit is cost-efficient iff EC = 1. 

Suppose that (xo, λo, μo) is the possible solution for model (5), Ur is the dual 

variable of rth constraint (c) and Vi is the dual variable of ith constraint (a) and 

Wp is the dual variable of pth constraint (b). Dual model (5) has the following 

form: 

max ∑ Ur

s

r=1

yro 

s. t.  ∑ Wp

q

p=1

zpj − ∑ Vi

m

i=1

xij ≤ 0                        j = 1, … , n                         
 

                ∑ Ur

s

r=1

yrj − ∑ Wp

q

p=1

zpj ≤ 0                          j = 1, … , n                                             (7) 

                𝑉 = 𝐶 

Ur ≥ 0            r = 1, … , s    ,    Vi ≥ 0            i = 1, … , m   , Wp ≥ 0      p = 1, … , q 

 

Using Karush-Kuhn-Tucker (K.K.T) optimality conditions, following conditions 

should be met. 

1- Is the initial possible solution 

2- (U,V) is the dual possible solution 
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3- The condition of complementary slackness holds. 

Strong complementary slackness condition (SCSC): 

1) if      ∑ λjxij

n

j=1

< xi    then          Vi = 0                                                                   (8) 

2)if      ∑ λjyrj

n

j=1

> yro    then             Ur = 0    

We perturbed target function of C to vector V in a way that the possible point 

becomes optimum relative to V. therefore, the goal is to minimize ‖C − V‖, we 

used norm 1 to optimize ‖C − V‖. The problem of inverse linear programming of 

two-stage cost will be expressed by following equation using K.K.T optimal 

condition: 

min  ‖C − V‖ = min ∑|Ci − Vi|

m

i=1

 

s. t.   ∑ λjxij

n

j=1

 ≤ xio                                         i = 1, … , m                       
 

          ∑(λ
j

− μ
j
)zpj

n

j=1

≥ 0                                  p = 1, … , q                                    (9)         

         ∑ μ
j
yrj

n

j=1

≥ yro                                            r = 1, … , s                                            

         ∑ Wp

q

p=1

zpj − ∑ Vi

m

i=1

xij ≤ 0                        j = 1, … , n  

         ∑ Ur

s

r=1

yrj − ∑ Wp

q

p=1

zpj ≤ 0                      j = 1, … , n  

         Vi(xio − ∑ λjxij
n
j=1 ) = 0                          i = 1, … , m 

Wp (∑(λ
j

− μ
j
)zpj

n

j=1

) = 0                               p = 1, … , q                  

Ur (∑ μ
j
yrj

n

j=1

− yro) = 0                                  r = 1, … , s               
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 λj (∑ Wp

q

p=1

zpj − ∑ Vi

m

i=1

xij) = 0                        j = 1, … , n 

  μ
j
( ∑ Ur

s

r=1

yrj − ∑ Wp

q

p=1

zpj) = 0                     j = 1, … , n  

    λj ≥ 0              j = 1, … , n                           

   Ur ≥ 0            r = 1, … , s    , Wp ≥ 0       p = 1, … , q     

   Vi  ≥ 0               i = 1, … , m 

Model (9) is nonlinear which will be transformed to linear problem using a 

variable change. 

𝑡i = Ci − Vi   , 𝑡i = αi − β
i
                                                        

αi, β
i

≥ 0                        i = 1, … , m      

ρ
𝑖𝑗

= Vi  λj     ,     ηrj
= Ur 𝛍j        , Υpj =  Wp  λj                                                 (10)  

Κpj =  Wp 𝛍𝑗          i = 1, … , m  ,       j = 1, … , n, p = 1, … , q 

Changing the variables of (10), the problem of linear programming will be: 

min   ∑(

m

i=1

αi + β
i
) 

 s. t.   ∑ ρ
ij

xij
n
j=1  ≤ Vixio                                                  i = 1, … , m 

           ∑ (Υ
pj

− Κpj)zpj
n
j=1 ≥ 0                                 p = 1, … , q             

      ∑ η
rj

yrj
n
j=1 ≥ Uryro                                              r = 1, … , s                                            

         ∑ Υpj
q
p=1 zpj − ∑ ρ

ij
m
i=1 xij ≤ 0                           j = 1, … , n         

        ∑  η
rj

s
r=1 yrj − ∑ Κpj

q
p=1 zpj ≤ 0                             j = 1, … , n  

         Vixio −  ∑ ρ
ij

xij
n
j=1 = 0                                            i = 1, … , m                    (11)     

       ∑ (Υ
pj

− Κpj)zpj
n
j=1 = 0                                            p = 1, … , q                

       ∑  η
rj

yrj
n
j=1 − Uryro = 0                                           r = 1, … , s               
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       ∑ Υpj
q
p=1 zpj − ∑ ρ

ij
m
i=1 xij = 0                                  j = 1, … , n 

       ∑  η
rj

s
r=1 yrj − ∑ Κpj

q
p=1 zpj = 0                                j = 1, … , n  

   Vi = Ci − αi + β
i
                                                              i = 1, … , m       

    Ρij ≥ 0              j = 1, … , n   و    i = 1, … , m       

  Vi, αi, βi
≥ 0                        i = 1, … , m        

   Ur ≥ 0      ,   η
rj

≥ 0    , r = 1, … , s    , j = 1, … , n 

   Κpj , Υ
pj

≥ 0       p = 1, … , q               , j = 1, … , n 

5. Numerical example 1: Table 1 presents the data of 20 units including 2 

inputs, 2 intermediate values and 2 outputs. The costs of first and second inputs are 

170.45 and 345.4, respectively. The results are listed in Table 2. 

 

Table 1. Data for 20 DMU 

Output

2 

Output

1 

Intermediat

e2 

Intermediat

e1 

Input

2 

Input

1  

DM

U 

1044 1332 193.8 673 101 100 1 

989 1799 432 686 112 140 2 

720 720 270 422 198 114 3 

1052 997 220.1 569 86 92 4 

656 637 152 606 411 214 5 

570 520 133.4 288 230 134 6 

580 413 372.7 405 236 211 7 

642 388 115.2 432 237 146 8 

835 288 185 390 95 60 9 

301 455 56.9 345 111 551 10 

160 146 46.4 220 81 69 11 

347 251 64.5 268 200 86 12 

434 323 170 179 110 31 13 

187 188 215 336 93 83 14 

208 238 69.4 202 133 69 15 

206 336 137.1 388 98 75 16 
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306 195 41 228 101 79 17 

189 182 84 287 79 83 18 

413 121 70 215 79 53 19 

265 804 300 304 65 75 20 
 

The efficiency of the data in Table (2) was calculated by model (4) as presented in 

the second column of Table (2). Minimum cost was also calculated using model (5) 

and listed in the third column while the cost of each unit is provided in the fourth 
column. Cost efficiency of the units is presented in the fifth column as was 

calculated using equation (6). Target function of the inverse model (9) was 

calculated for the two-stage structure as reported in the sixth column. As Table( 2) 
suggests, units 9, 4, 2, 1 and 13 are CCR efficient and only unit 2 is cost-efficient. 

Now, using inverse linear programming model, 20 units were investigated. It was 

observed that the value of target function for CCR-inefficient units (14, 12, 11, 10, 
8, 7, 6, 5, 3, 19, 18, 17, 16, 15 and 20) as well as the cost were obtained zero. This 

means that it is impossible to obtain the cost of these units while they are efficient. 

The units which are both CCR- and cost-efficient (such as unit 2) showed to have 

zero target function and their cost was obtained the same as the previous cost. 
 

Table 2. Computational results for 20 DMU 

𝐕𝟐  𝐕𝟏 Model(9) 
Efficiency 

Cost(6) 

Cost of each 

unit 
Model(5) Model(4) DMU 

345.3998 271.9299 100.98 0.9916 51980.4 51539.34 1 1 

345.4 170.95 0 1 62617.8 62617.80 1 2 

0 0 516.350 0.3579 87877.5 31451.11 0.5100204 3 

128.8484 170.95 216.5516 0.9905 45431.8 44998.72 1 4 

0 0 516.350 0.1587 178542.7 28325.60 0.2442532 5 

0 0 516.350 0.2348 102349.3 24030.75 0.3296945 6 

0 0 516.350 0.2028 117584.85 23850.27 0.2251284 7 

0 0 516.350 0.2438 106818.5 26041.26 0.3266750 8 

41.54628 170.95 303.8538 0.7603 43070 32746.60 1 9 

0 0 516.350 0.1247 132532.85 16529.19 0.2749582 10 

0 0 516.350 0.1696 39772.95 6746.084 0.1925106 11 
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For CCR-efficient units which are not cot-efficient (like units 9, 4, 1 and 

13), the value of the target function was different. For unit 1, the value of the 

inverse model target function was 100.98 and its first and second input cost values 

were 271.9299 and 345.3998, respectively. This means that if we change the cost 

of first and second inputs to these values, the unit will be cost-efficient. The same 

trend holds for units 4, 9 and 13 which showed different values in Table 2. With 

the newly obtained costs, the technically efficient units which were not cost-

efficient can become cost-efficient if they employ the new price vectors. 

6. Inverse model for two-stage structure by consideration of    

     intermediate input cost 

In some cases of two-stage systems, intermediate input has some costs 

(such as warehouse costs) which may be effective in calculation of cost efficiency. 

In this section, we suppose that the first input has costs and the intermediate 

product of the first stage is the output with no cost. For the second stage however, 

it acts like an input and has costs. For this purpose, we developed the proposed 

inverse model of section 4 for cases where the intermediate input has costs. 

Consider (i = 1, … , m) Cij as the cost vector for the first stage input and  

(p = 1, … , q) Qpj as the cost vector for second stage input. Now, based on model 

(4) presented by Kao and Hwang (2008)  for two-stage system efficiency, the cost 

of a two-stage system in which the intermediate input has cost can be expressed as: 

min   CX + QZ 

0 0 516.350 0.1706 83781.7 14289.32 0.2979956 12 

5.524068 170.95 339.8760 0.4139 43293.45 17918.97 1 13 

0 0 516.350 0.1768 46311.05 8185.913 0.1938170 14 

0 0 516.350 0.1677 57733.75 9684.728 0.2595383 15 

0 0 516.350 0.2568 46670.45 11984.72 0.3106000 16 

0 0 516.350 0.2576 48390.45 12464.37 0.3044475 17 

0 0 516.350 0.1961 41475.45 8134.391 0.1994370 18 

0 0 516.350 0.4456 36346.95 16196.82 0.5685612 19 

0 0 516.350 0.79339509 35272.25 27984.83 0.8122464 20 
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s. t:         ∑ λjxij ≤

n

j=1

xi                                  i = 1, … , m                (a) 

                 ∑(λj − μj)zpj

n

j=1

≥ 0                   p = 1, … , q                  (b)                          (12)               

                ∑ μjZpj
n
j=1 ≤ Zp                                p = 1, … , q             (c)           

                ∑ μjyrj

n

j=1

≥ yro                                  r = 1, … , s              (d)                                        

                    μj, λj ≥ 0                                        j = 1, … , n 

Definition 2: assume (x∗, Z∗, λ∗, μ∗) is the optimal solution of the model. 

The efficiency of the evaluated unit can be defined as: 

EC =
∑ Cioxi

∗m
i=1 + ∑ QpoZp

∗q
P=1

∑ Cioxio +m
i=1 ∑ QpoZpo

q
P=1

                                                                    (13)   

        , 0 < ECj ≤ 1 

The evaluated unit is cost-efficient iff EC = 1. 

Suppose that (xo, Zo, λo, μo) is the possible answer for model (12), Vi is the dual 

variable for ith constraint (a), Wp  is the dual variable for pth constraint (b), 

Hp denoted the dual variable for the pth constraint (c) and  Ur represents the dual 

variable of rth constraint (d). Dual model of (12) has the following form: 

max ∑ Ur

s

r=1

yro 

      s. t.  ∑ Wp

q

p=1

zpj − ∑ Vi

m

i=1

xij ≤ 0                                  j = 1, … , n                        (14) 

       ∑ Ur

s

r=1

yrj − ∑(Hp − Wp)

q

p=1

zpj ≤ 0                         j = 1, … , n 

       V = C           ,    H = Q     

       Ur ≥ 0                  r = 1, … , s     
        Vi ≥ 0                  i = 1, … , m   
     Hp, Wp ≥ 0           p = 1, … , q  

The problem of inverse linear programming of cost with two-stage structure can be 

expressed in following form by use of K.K.T optimization condition: 

min( ‖C − V‖ + ‖𝑄 − H‖) = min(∑|Ci − Vi|

m

i=1

+ ∑|Qp − Hp|

q

p=1

) 

s. t.   ∑ λjxij

n

j=1

 ≤ xio                                                    i = 1, … , m                        (15)         
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          ∑(λj − μj)zpj

n

j=1

≥ 0                                                 p = 1, … , q             

         ∑ μjZpj

n

j=1
≤ Zpo                                                   p = 1, … , q                      

         ∑ μjyrj

n

j=1

≥ yro                                                           r = 1, … , s                                            

         ∑ Wp

q

p=1

zpj − ∑ Vi

m

i=1

xij ≤ 0                                      j = 1, … , n  

       ∑ Ur

s

r=1

yrj − ∑(Hp − Wp)

q

p=1

zpj ≤ 0                         j = 1, … , n  

         Vi(xio −  ∑ λjxij
n
j=1 ) = 0                                         i = 1, … , m 

Wp (∑(λj − μj)zpj

n

j=1

) = 0                                              p = 1, … , q                  

Ur (∑ 𝜇𝑗yrj

n

j=1

− yro) = 0                                               r = 1, … , s               

 Hp(∑ μjZpj
n
j=1 − Zpo) = 0                                             p = 1, … , q                      

 λj (∑ Wp

q

p=1

zpj − ∑ Vi

m

i=1

xij) = 0                                   j = 1, … , n 

  μj ( ∑ Ur

s

r=1

yrj − ∑(Hp + Wp)

q

p=1

zpj) = 0                j = 1, … , n  

 λj ≥ 0                 j = 1, … , n    ,   Ur ≥ 0                       r = 1, … , s     

  Wp ≥ 0             p = 1, … , q     

  Vi  ≥ 0               i = 1, … , m      

7. Numerical example 2: in this section, inverse model of (15) is 

investigated on the data of 20 DMUs. The data of Table (1) were used. In this 

example, the first and second input costs are similar for all the units and equal with 

170.95 and 345.40, respectively. For the intermediate stage input, the costs of first 

and second stages are 120 and 180, respectively. The results are listed in Tables (3a 

and 3b). 
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Table 3a. Computational results for 20 DMU 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

DMU Model(4) Model(12) cost of 

each unit 

Efficiency 

Cost(13) 

Model(15) 

1 1 167624.4 167624.4 1 40.23862 

2 1 222697.8 222697.8 1 0.2040874E-03 

3 0.510020 106631.8 187117.5 0.5699 816.350 

4 1 153329.8 153329.8 1 0.0001 

5 0.244253 96299.77 278622.7 0.6716 816.350 

6 0.329694 82602.75 160921.3 0.5133 816.350 

7 0.225128 82052.01 233270.85 0.35175 816.350 

8 0.326675 89632.19 179394.5 0.4996 816.350 

9 1 112846.6 123170 .91619 303.8538 

10 0.274958 56546.26 184174.85 0.3070 816.350 

11 0.192511 23187.56 74524.95 0.3111 816.350 

12 0.297996 49157.11 127551.7 0.3854 816.350 

13 1 61638.00 95373.45 .6463 455.6604 

14 0.193817 27739.58 125331.01 0.22133 816.350 

15 0.259538 32158.35 94465.75 0.3404 816.350 

16 0.310600 41686.22 117908.45 0.3535 816.350 

17 0.304447 24139.01 83130.45 0.2904 816.350 

18 0.199437 27676.34 91035.45 0.3040 816.350 

19 0.568561 17095.41 74746.95 0.2288 816.350 

20 0.812246 36030.57 125752.25 0.2866 816.350 
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Table 3b. Computational results for 20 DMU 

 

 

DMU 𝐕𝟏 𝐕𝟐 𝐇𝟏 𝐇𝟐 

1 170.9498 345.3969 119.9859 139.7787 

2 170.95 345.40 120 180 

3 0 0 0 0 

4 170.95 345.40 120 180 

5 0 0 0 0 

6 0 0 0 0 

7 0 0 0 0 

8 0 0 0 0 

9 170.95 41.54628 120 180 

10 0 0 0 0 

11 0 0 0 0 

12 0 0 0 0 

13 170.95 28.65214 120 41.0875 

14 0 0 0 0 

15 0 0 0 0 

16 0 0 0 0 

17 0 0 0 0 

18 0 0 0 0 

19 0 0 0 0 

20 0 0 0 0 
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CCR-inefficient units (such as unit 3) are not cost-efficient either. Using the 

presented inverse model, the value of the target function was obtained 816.350 and 

the first and intermediate input costs were 0. CCR-efficient units which are not 

cost-efficient (such as unit 9) have target function of 303.8538 with first cost input 

values of 170.95 and 41.5463. Their intermediate cost input was 120 and 180. 

 Using the new prices, unit 3 became cost-efficient. CCR-efficient units which are 

also cost-efficient (such as units 2 and 4) showed the previous costs. But for the 

unit 1 which is both CCR- and Cost-efficient, costs of the second and intermediate 

stages were decreased. Using the new prices, unit 1 is also cost-efficient. 

 

8. Conclusion 

Using inverse linear programming model, we proposed a new model capable of 

finding price vectors for CCR-efficient units which were not cost-efficient in a way 

that they became cost-efficient. We concluded the same for a model in which the 

intermediate input possessed cost. We even found new price vectors for cost-

efficient units which were lower than their previous prices. The units maintained 

their cost efficiency with their new price vectors. The major feature of the 

proposed model is determination of new prices to reach to optimal costs in unit 

strategy determination; as the cost efficiency constitutes more important 

information for management and programming on its basis will be more valid. The 

presented numerical examples showed the superiority of the proposed method over 

the conventional data envelop analysis methods. 
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